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INFLUENCE OF BACKGROUND ON THE FORM OF SPECTROCHEMICAL
CALTIBRATION CURVES

H. EKaiser

I. TIntroduction /297

The way in which the background in the spectrum must be
taken into account in measuring the intensity ratio &f two
spectral lines is well known. Numerical tables for the required
conversions were published in a work of M. Honer]ager-Sohm and
H. Kaiser [2]}. 1In this work an additional slide (U-sllide) is
recommended as a speclal accessory for the Owens analyzer [6].
This makes the background correction so simple that it can be
carried out by trained technicians in the everyday work of a
spectrochemical laboratory. Nevertheless, it would still be
desirable to aveld the additional work always associated with
the background correction, whenever the systematic errors in the
analysis can be tolerated. This gives rise to the fol@owing
guestions:

When must the background be taken into account? What sys-
tematic errors will appear in the result of the analysis when
the background is neglected?

If the background is ignored in drawing up ai.calibration
curve, how can this curve be converted as a whole to the associated

calibration curve with the background correction?

How can calibration curves In which the background is lgnored
be continued into the region of lower concentrations in which the
background must be taken into account?

Since these guestlons have not yet been systématically

*Numbers in the margin indicate pagination in the foreign text.



only examples have'been published, e.g. in a report of G. Balz
[1], which shows how a calibration curve bent by the influence
of the background is breoadened by the correction.

II. Calibration Lines and Curves

As in previous works, we use Y for the logarithm of an
intensity and AY for the logarithm of an intensity ratio. We
wish to assume that the universal main calibration curve of the

spectrochemical method under consideration is precisely a straight

line, oncecthe background has been taken into account. This
assumptlon will be valid in most cases. We tTherefore formulate
the following calibration equation:

logh = 5A4Y, - log k. \ (13

We use the Greek letter n for the siope ef the calibration
line, by analcgy with the symbol v for the s5lope of tThe density
curve. ko is the concentraticn at the fixed point (AYG = D).
The index G to AY is to indicate that the intensity ratio is to
be taken between the analyzed. line L of the alloying element Z
and a line of the base element G. When we take

[

,4)‘:(, = 71 —~Tg

we must first calculate ¥ by a background correctlon from YL+U
[U = backgroundl]ithls is because the immediate result of the
density measurement is just the intensity for the line and back-~
ground (L + U) together.

We now Introduce the Intensity ratioc of the analysis line
of the alleoylng element Z against 1ts background U AY YL -
- YU » and using the ldentity

A SR |
E.NJYU—AYW+OGMYW) !

Lt e ’

we obtain from (1) the general equatlon for the calibration

7z 8y T

curve measured agalnst the background:
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logk = nAYy—g(Ygu— YUZ) + log k.

e (2)

I, In general, (Y, - YUZ) is st1ll a function of k. So that the
callbration curve against the background will also be a straight -
line, we wish to assume that YG - YU ~ logk. Accordingly, we
can assume, without loss of generali%y, that ¥ - Yy_ is constant;
otherwise there would just be a different value Tor ﬁ in (4).

We Introduce a new constant by the equation

logky = logko — (Vg — Tu,) / (37

i

kU is the concentration at which the intensities of the line and
the underlying background are equal. The bar above the expression
in parentheses indicates that the mean value of this gquantity
should be taken from different calibration spectra. For the equa-
tion of the calibration line measured against the background, we
obtaln

: '.§]0g k ‘:‘-r] A YU + log k. / ( A )

We will call this form the (true) callbration line to dis-
tingulsh 1t from other calibration curves to be considered later.
Assuming that the true calibration curve 1s a straight line at
this point will not involve any loss of generality in subsequent
considerations. This assumption is valid in most cases; further-
more, later developments will show that deviations from the
straight line can be directly worked into the theory (see Egs.
(5) and (6)). However, the further assumption that Yy - ¥y 1is
constant .(or at least a simple, monotenic function of k) 1g%
necessary. We can make statements about the influence of the
background on the caglibratlion curve as a whole only when we know
the behavior of the background as a whole, i.e. as a function.

If the background depended -on incidéntal factors, e.g. certain
additivés in the Specimens,knothing at all could be sald about
the calibration curve without the background correction; there
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would be no alternativé but.to.déduct'the background from the
analysis lines in each i1ndividual case and to use the main cali-
bration curve (1}). Eguation (#) with AYy could not be formulated.
Nevertheless, the requirements on the constancy of YG - YU do
not have to be as striet as e.g. those on the constancy of the
measured value ﬁYG in repeated spectra of the same specimen in

a method for precise quantitative analyses. Namely, using the
abbreviation '

- Yi4uv— Yy =loga, /

the quantity D relevant Ffor the background correction is equal
to logx - log{(x - 1) [2]. 1In transferring the background
fluctuations to the correction factor D, it 1s the derivative

i ~ap 1
\1 dlogz = —1"°

which 18 erucial

This transfer factor 1s smaller than 1, as long as the line by
itself is stronger than the underlying background; in that case,

X > 2,

If the line is not too weak in comparison with the back-
ground -~ and that will usually be the case 1n precise guantitative
analyses -- inhomogeneitles 1in the dntensity of the background /300
will have a diminished effect on the correction. In that case,
taking the correction for a mean background intensity will not
cause any large errors. Only experience will show what is per-

missible in such cases.

If the background for different specimens is not quite
egual, no reasonable calibration curve would be obtalned by
taking the value of &Yy = ¥y - Y. from the measurements for
each specimen. However, we need Eq. (4) for the true calibration
line expressed in terms of the background. Therefore, we express



the line intensities in terms of a mean normal background, cal-
culating AYU from aYG by adding YG - YU . This puts everything
in the definition of ky In Eq. (3). 2

We should also point out that so far we have spoken only of
the background lying behind the analysis line. We do not care
about the background at the point of the base line. If its
ratio to the base line 1s constant, it does not have to be taken
into account, since it would only change the value of AY by an
additive constant; 1f the ratio &s variable, the background must
always be deducted.

We now formulate the equation for the bent calibration curve,
obtained when no background corrections are made. All associlated
quantitlies are designated by an apostrophe. For example,

d¥y =Ty p— Y. \

We obtaln the equation of this (true) calibration curve by

combining the equatilon for a straight line with a correcticn
function h.

1on~r, =y JYL . ]ofrl.b J—}z(HU) (5)

For the time being, the constants u', kl, and the function h
will remain completely undetérmined; the power of this purely
formal approach will become.evident later. We subtract (4) from
(5) and, using the abbreviation v = log kjj - logky, we obtain

- 6)
h(dyf}):ﬁ flu“"l ]YU | (2 ¢

e v We set the quantity obtalned dlrectly from the measurements,

- hamely AY "equal to logx.l‘ Then S .

1At this point we 1ntroduce the neutral letter x for the intensity.
ratio, because we wish to treat it as a purely computational vari-

able. It would just be a nulsance 1f we dragged along the idea of
its physical significance.




AYy = log (& —1). /

This is because, returning to the lntensities themselves,

- AYy, :]{)g(IL/IU): ’

and J S , : :
- ar;{'::_'_;gg_"%ﬁi‘ = log (-%_; +. /
From (6), we then obtain:
Mgy i

If values are now assigned to the constants n' and v, the
related functlon h(X) can be calculated for each value of x.
From (5), we then acquire the equation of the true calibration
curve, in the derivation of which no background correction was
made. This equation can be used e.g. to find the deviations of
the calibration curve (5) from the calibration line (4). To do
this, we must merely set hR' = n and v = 0.

IIT. The Equivalent Calibration Line

It'is tempting to assume that the differences between (4)
and (5) calculated in this way would give the systematic errors
in the analytical values when the background correction (i.e.
using a bent calibration curve) is omitted and a straight line
used insteady because the curvature islhardly noticeable. This
assumption 1s wrong. In fact, the strailght line employed for
anglysis in such cases 1s not the ftrue calibration line, but a
substitute calibration line, replaciﬁggthé'trme callibration
curve in the relevant measuring rangé.

Figuré 1 shows the true state of affairs. The true calibra-
tion line (designated AXU)‘and the true calibration curve AYY

~
w
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differ only slightly:dt high
cdncéntnations when the line
of the élement to be deter-
mined 1s strong in comparison
with the background. However,
the weaker this llne becomes,
the further downward the
calibration curve is pulled
by the influence of the
background. Finally, it
approaches asymptotiecally

the vertical line AYU = 0,
which corresponds to the
intensity of the background
by itself.

B B sy,
s ) 3 . J
Fig. 1. Calibration line (AYU), How is the substitute
calibration curve (AYﬁ), and

calibration line produced?
substitute calibration line for
a 1limited concentration range.

(All with respect to the mean’ specimens with reliably
normal background. )

Assume that we have three

determined concentrations

Key: a. Calibration line kl, kg, and,k3 for the main
: b. Calibration curve

¢. Substitute calibration

line . k, is at the lower end of the

calibration of the procedure.

intended measuring range, k2

at the upper end, and k3 roughly in the middle (on the logarithmic /302

scale). From the calibration spectra we find three measurements
aYY = logxqy, &Yy = logx,, and AY! = logx,. If we ignore
U 1 U : _ U, - 3

mea%uring errors, %he assoclated poinés‘must lle precisely on the
calibration curye, as shown in Fig. 1. Since we have ignored the
relatively weak background, and not even measured it, we know
nothing about the true calibration curve and 1ts curvature; we
see only three calibration points, which do not lle precisély &n

a straight line. If the deviation from a straight line is not too

i



blatant, we will be inclined to draw a straight line past the

three points in such a fashﬁontthat'thé différences are minimized.

We are misled by our desire to make linear 1ntérpolations, and

we might even assume that the observed curvature is not real,bbut /303

Just simulated by erroneocus analytical values for the calibration

Specimens.

Instead of the true curved calibration curve, we draw the
substitute calibration line! One such line is drawn in Fig. 1.

It is important that a substitute calibration line is always
assoclated just wilth a fixed measubring range, in which it repre-
sents the best approximation to the calibration curve. Each
measuring range has its own substitute calibration line. We now
wish to know how the substitute calibration line 1s determined.

If we knew the position and shape of the true calibration
curve, the substitute calibration line could be determined e.g.
from the requirement that the mean square error over the entire
intended measuring range should be minimized. For the time being,
héwever, we do not know the true calibration curve, 5ut have only
three calibration poéints. (This is actually fortunate, since ahe
least squares it would result in equétions which cannot be solved!)
In such a case we proceed as follows: first we connect the two
outer measurements by a straight line and then, malntaining the
same slope, we shift the line toward the middlewmeasurement until
all three points are equally distant from this line.

If in (7) we conslder n' and v the constants of the substi-
tute calibration line, then h is just the difference between a
measured point on the true calibration curve and the substitute
calibration line. = The above rule for drawing the substltute
calibration line on the basis of t he three measured points thus
ylelds the following conditdons:



h(x;) = hGp)s (8a)
hixg) = =h(xy). (8b)

Together with ¢7), ¢8a) gives the eqﬁation for the slope n' of
the substitute calibration line

o log (@, — 1) — log o, — 1)
' ?} . 5 log s, — logx, : t (9)
(8b) and (7) imply

! v Ef%d (logml + log m:s) “ % (h)g {zy — i) ‘i‘. 1(7)37{563 — ])) } _ (10)

L

v was the abbreviation for logktJ - logk%r We thus have the
intersection of the substitute calibration line with the vertical
line AY = 0, 1.e. the fixed point relative to the background.

The concentration k& agssociated with this fixed point will never
appear as an analytical result as long as we make no background
correction and use only the substitute calibration line; since
the line and background together are always greafer than the back—'[igi
ground by 1itself, AY& = YL+M - YU can never be zero. The number
v gives the displacement of the fixed polnt of the substitute
calibration line from that of the true calibration line (see

Fig. 1).

If we wlsh to return from background-based calibration lines
to those based on a line of the base element, we merely apply
Eq. (3) to the calibration line and the substitute calibration
line, thus obtaining for the displacement of the two fixed points
based in the usual way on the lines of the basecelement

log ko — log k.;, = ¢ |- (‘1] — 7].') (im) ' (ll)

In general, the fixed point k) of the substitute calibration line
based on the idne of the base element can naturally occur as a



result of the analysis, namély when the intensility of the base line
is greater than that of the background at the point of the alloying-
element line. Figure 2 shows how these diffierent calibration lines

are related.

Substituting in (7)
the constants n' and v

l@
|

J .

found for the substitute

oon ) R

Tog &y
Tog &y

calibration line, this

dog ko

equation immediately gives

L Lgk,
. 2ags, |-

us the magnitude of the
“dog kg

improvement which we must

[ Ay o make in the value of logk
| et e .

determined from the substi-

Fig. 2. Relative positions of . tute calibration line.
calibration line and associated

substitute calibration line (broken Hence, we know the systematic

line), wlth respect to the back- errors in the analytical
gig;ggtor the line of the base values which arise when we

make no background correc-
tion and 1gnore the resulting curvature of the calibration curve.
We thus have all the facts necessary for answering the questions
posed in the introduction.

We first wish to inquire into the position of the middle
calibration polnt, which is used in determining the subst&tute
callbration line. If we could freely choose the concentration of
the alloying element in this calibration specimen, it would
certainlyybe best to take the middle measurement at the point
where the calibration curve is firthest from the substitute
calibration line. In order to findrthis point x_,, we must differ- /305
entiate (7) with respect to x and set the derivative equal to zero.

We find S '

vk
wip—1’

: ﬂ,az

(12)
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This point of maximum difference is not in general in the middle
of the range, because the curvature of the true calibration curve
is not uniform.

IV. Manipulating the Conversion Formulas

We now wish to show how the different conversion problems
can be selved with the aid of the formulas which have been
developed. We will always start from the normal case, i.e. the
calibration lines and curves being expressed in terms of a line
of the base element G. The calibration equations expressed in
terms of the backgroundrappear only during the conversion.

1) Given: The true calibration line (with background
correction).
To find: The true calibration curve (without background

correction).

We know the constants n and ko of the callbration line (1).
To make the conversion, the gquantity YG - YUZ must be measured in
the spectra of the specimens. We must check whether YG - YU
in the spectra of the different specimens has the same value
within the unavoidable measuring error. Only then willl the
conversion make sense. From all the spectra, we take the mean
value ?a_:_?a_.

Z

Now we calculate loglky from (3), and then have the equation
of the calibration line expressed in terms of the background (4).
From this equation, we calculate the value of AYU = log (x - 1)
for however many different values of k as we wish. With these
numbeirs, we consult the numerical tables on the Seldel trans-
formation (see [2]) and take the corresponding values of logx =
= AY% from the first column of the‘tablé; Finally, we subtract
Y, - ¥; from these numbers, thus obtaining AY,. With these

G U
pairs o% values (log k,, AYé), we draw the desired true calibration

11



curve (without backgroﬁnd correction}, expressed in terms of a
line of the base element.

This conversion is important for the following reason: we can
use the callbration curve to prepare for the Owens analyzer a
concentration scale already containing the background correction.
If we wished to détermine the calibration curve directly from
measurements on a few calibration specimensy it would not be
possible to do it precisely, because interpolatlions between the /306
measured points on the curved graph will not be very good, and
because errors in the concentration figures for the calibration
specimens as well as measuring errors wlll not be recognizable.
Therefore, it is much better to first determine the true c¢alibra-
tion line (with background correction) and from it to calculate
the calibration curve (without background correction). The cali-
bration line can be obtained with sufflcient precision from the
measurements on two or three calibration specimens; inaccuracies
in thecconcentration figures show up, and can be checked and
nullified, the same being true cof measuring errors. By this
detour, we obtain more reliable figures for the analysis.

2) Given: The true calibration line (with background
correction).
To find: The substitute dalibration line {(without back-
ground correction) for the range of concentrations from ki to k,.

We again have n, k, and YE—:_YE_} and from them calculate,
with the ald of (3), the equation of fhe true calibration line,
expressed in terms of the background (4). We substitute k, and
ka_into this equatiqn, obtaining the associated values of aYUl =
= 1og (x4 - 1) and &Yy = log (x, - 1). For this purpose,. we
find -- most conveniently by using the numerical table for the
Seidel transfiormation -~ the Va;ﬁés’of 103591 and lpgxgﬂ
Equation (9) now gives the slope n' of the substlitute calibration

12



line. We substitute this value of n' in (12), thus obtaining
X, for the point of maximum difference. In (10), we replace Xg-
by X4» thus acquiring v. Finally, Eq. (11) supplies the dis-
placement of the fixed points. All that remains is to draw a
straight line of slope n' through thé fixed point with the coordi-
nates 1og135 and AY = 0, the line interval extending along the
vertical axis from loglﬁ_ to 10gk€. We then have the desired
substitute calibration line logk =‘n'AYé + logkﬁ « From (7),
we can now calculate the improvement for each measurement which
must be added to the analytical result. These improvements can
be recorded once and for all in a table or a curve.

3) Given: A substitute calibration line for the range
between kl and kg, determined by three calibration points at kl’
To find: The true calibration line for an arbitrary
measuring range (with background correction).

Given are n', ki, ky, ks, k%, and ?a":_ngl First we apply
Eq. (3) to the numbers represented by symbols wWith apostrophes,
thus obtaining loglqr Then we know the equation of the substi-
tute calibration line with respect to the background. For kl, kz,
and k3, we calculate the values of AY& = logx, if the latter are
not already given by the calibration measurements, which is
preferable. For thls purpose, we find log {x - 1) from the table
of the Seidel transformationi: These numbers and Ea. (9) furnish
the slope n of the true calibration line, and then Eq. (10) gives
the distance v between the fixed points. From (11), we obtain
log ky for the fixed point of the true calibmation line, which we
can draw with slope n through the fixed point with the coordinates
log kg and AY = 0.

If the substitute calibration line iz to be determined by
more calibration points than just three, the rule given in ITT.
for its construction must be modified accordingly. For the

13



conversion, we need only three polnts; the middle point is chosen
so that the conditions (8) are satisfied.

4) ‘Given: A substitute calibration line for the range
between kl and kz, determined by three calibration polnts at kl,
k3, kg.

To Pind: The substitute calibration line with the best
fit for another range from kI to kII'

This problem is solved in two steps. First, as in 3}, we
determine the true calibration line, and then, as in 2), we
determine the new substitute calibration line for the range
from kI to kII'

The two problems {(3) and 4) have great practical significance.
Suppose that by taking several careful calibration spectra, we
had obtained a very accurate main calibration curve for determin-
ing an alleying elemefit Z in a base element G. This calibration
held in a region of higher concentrations of Z, in which the
background behind the powerful analysis line of Z could be ignored.
The callbration curve 1s drawn as a stralight line; 1t 1s therefore
a substdtute calibration line, valid only 1n the range encompassed
by the calibration specimens. Now suppose we take the specfrum
of a specimen in which the line of Z is much fainter, sco that the
background must be taken into account. If we Jjust extrapolated
the substitute callbration line valid for high concentrations,
the resulting Z concentration would be much too high. What can
be done? One would be very reluctant to remeasure the old
calibrating phetographs -- 1f they are still around -- and to
make the background correcticn on all the individual values,
although it would ke very nice to exploit the high precision of
the old calibration for the new problém. - However, if experience
has shown thatithe baékground at the Z line is constant, the new
calibration can be computed with the ald of the above formulas.

14



All we have to do is find,YG "‘IU . This.can often be done from

the spectrum of the unknown specimen; there may be other spectra

for specimens of the same type, so that a mean value can be taken. /308
Once we have this number, we can eithér calculate the true call~
bration line {(with background correction) or a substitute calibration
line for the lower range.

In view of such cases, which come up guite often in the ongoing
work of a technical laboratory, it is a good idea to simultaneously
determine the number ?E":*?E; in each calibration. Thiswmakes 1t
possible to later expand the range of validity of the calibration.
As was shown 1in a previous work [4], this number must also be known
in order to calculate the detection limit attainable with a given
procedure and the minimum concentration at which a prescribed
accuracy can be adhered to (determination limit).

This answers all the questions of the dntroduction except
for the first very general one. Before we deal with this one as
well, we wish to make the previous discussion more vivid by means
of a nﬁmerical example.

V. Numerical Example

The numerical values of the example come from measurements on
three aluminum speclimens of the alloy type AlMg5, manufactured as
calibrating electrodes by the Wielandwerken in Ulm. These specimens
had been precisely analyzed. The spectra were taken in accordance
with the procedure AV 22 (Zeiss Druckschrift Mess 266/III). For
this work, only the data on the spark discharge and the slit width
of the spectrograph are important, because they determine the
intensity of the background. The sparks were produced with the
Feussner spark generator; the capacitancé‘in the spark circuit was
8100 pF, and the only self-inductance was that of the leads, about
'6.10“6 H. The slit width of the Zelss spectrograph Q 12 was 0.035
mm. Of interest were the calibration curves for manganese. The

15



measured line was Mn=2949'i and the base line was Al 3050_3.

The Y values were calculated in thé usual way from the optical
densities, then AY, both with and without subtraction of the
background at 2949 E. These values are in columns 5 and 6 of
Table 1. These are mean values from three spectra apiece. In
the fourth column are the values of logk . They are taken for
the concentrations expressed 1n terms of the Al content of the
specimens. These concentrations must be calculated from columns
2 and 3.

TABLE 1.
| 1 2 3 . 4 5 6 7
. Specimen - % Mu o Al logk 47, MY Y u—Yp
5U 0.10 93.0 | — 0.008 | — 0.352 | — 0.715 | 0.247
{ 571 | o028 94.0 | —0.526 | — 0.104 | — 0.248 | 0.550.
: 58 {045 | 935 | — 0318 | + 0.066 | — 0.041 | " 0.661 .

With the numbers in Table 1, the true calibration line for
the Mn determination (column 6) and the substitute calibration
line for the range from 0.10%to 0.45% Mn (column 5) can be drawn.
The measurements are plotted in Fig. 3. For the constants of the
true calibration line we find:

n = 01965 and logk, = -0.283.

0

(This line 1s not drawn in Fig. 3, but instead the true
calibration line calculated from the substitute calibration line.,)

The constants of the substdtute calibration line are:
n' = 1.555 and logk} = -0.393.

This line 1s drawn as an interval in Fig. 3, and the fixed
point ké is indicated. The deviations of the three measurements

16



from the straight line are so small that one would hardly draw a

nonlinear calibration curve through them 1f one knew nothing of

the interrelationships.

The systematic errors in analysis whilch

would result from this carelessness will be discovered as we

calculate through the example.

S Mow b oD T

u
[y

ol

Fig. 3. True calibration line
and substltute calibration line
for determining manganese in
aluminum alloys. (Bottom right:
correction curwve for substitute
calibration line; hroken line:
substitute calibration line for
0.05% through 0.2%3})

Key: a. True calibration line
{calculated)
b. Substitute calibration
line
¢c. Correction

up the corresponding value of AYU

0.344, and 0.573.

For the calculation, we
require Yo - ¥y . Ihe mean
value for this quantity,
determined from numerous
spectra, was 0.610. The
background for the middle
specimen was somewhat fainter
than for the two outer ones;
YG - YU was thus not quite
constang, but about 0.05
larger for the middle specimen.
However, this variagbility has
no major influence on the
calculation, so we eXpress
everything in terms of a
normal value for the background.

We now calculate the
values of AYb by adding 0.610
to each of the numbers in
column 5. This gives 0.258,

' 0.506, and 0.676, respec-

tively. For each of these
numbers aYﬁ = logx, we look
log (x - 1) and find -0.091,

17

/309



With these numbers, we obtain from (9) and (10) n = 0,980
and v = 0,470,

Equation (11) then supplies log ky = -0.274. Thus we have
found the constants of the true calibration line; they are only
slightly different from those previously derived directly from
the measurements. The calculated calibration line is drawn in
Flg. 3; 1t fits well with the measurements. If for Tafrﬁq;]
instead of 0.610, we had employed the corresponding value oQf
0.599 for specimen 5U, we would have found n = 0.962 and logky =
= -0.271. The slope would then agree better, but the line weuld
be situated somewhat above all three measured polnts. Calculating
With a mean value for the background was therefore correct.

By Eq. (12), the point of maximum error on the aubstitute /310
calibration line is Xy = 2.70. The associated AYé is lnga" - 0.610 =
= ~0,179. This point is indicated in Flg. 3 by an arrow. The
improvement h(xa) is #0.026, corresponding tc 6.2% of the concentra-
tion. Such large systematlic errors could therefore occur ¥f this
substitute calibration curve were used without correction. By com-
parison, the random measuring errors #n the analysis are much smaller,
because the dispersion of the method is less than 2%. The high
internal accuracy of such a completelanalytical method ecan therefore
be exploited only when the influence of the background is taken

into account in the analysis.

The corrections which must be made in using substitute calibra-
tion ldnes can be calculated from (7). The correction function is
plotted in Flg. 3 below the substitute calibration line. This
graph shows the great Increase in correction required outside the
range of yalidity of the substitute calibration line.

When the background in the spectra of all specimens to be
analyzed by the same calibraticn system'is roughly constant, so that
the theory is applicable, 1t is then beneficial to establish the
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corrections once and for all, e.g. in the form of the correction
curve for the substitute calibration line. Then, the background
does not have to be measured in éach‘analysis, thus aveiding the
random errors which would be introducéd intce the analysis by an
additlonal measurement of the background density.

We how wish to discover the substitute calibration line for
a low concentration range. We pick the range between 0.2% and
0.05%, which overlsps the lower end of the old range.
kl‘ = (0,05, logkI = -1.3; kII = 0.2; logkII = ~0.7.
With the previously calculated values for the true calibra-
tion line, we obtain from (3) logkIJ = =0.872, and thus for the
equation of the calibratlion line with respect to the background

logh == 0,954 ¥y — 6.872. \
Iniitwwe substitute the values for 1oglﬁ: and logk;r, thus

obtaining for the associated AY; = log (x - 1}: =-0.437 and +0.176.
The corresponding values of logx are 0.137 and 0.398. Now we

can caleulate n' from (9). n' = 2.28; then from (12}, x, = 1.75
with logxh_ = 0.243 and log(xa - 1) = -0.125. We substitute
this value of Xy in Eq. (10), and cobtaln the value 0.707 for v.
From (11), we then get loglﬂ}'=_ﬁ0.189. Thus we have the

constants for the new substitute calibration line and can draw i%.
It 1s the broken line in Fig. 3. From (7), we now calculate the
maximum value for the correction in the new range by substituting
the numbers for x,. We find h(x ) = 0.030, corresponding to 7.2%
of the content.

Lastly, we also wlsgh to calculate what would have happened
1f we had used the old substitute calibration line down to 0.05%.
For this purpose, using n' and v of the old substitute calibration
line as well as the logarithms associated with 0.05%, which we
have already calculated, we obtain from Eq. (7):
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n(0.05%) = -0.98.0,437 -~ 1.555-0.135 + 0.470 = -0.168%

This corresponds to U7.2% of the content. Thus, instead of
the true Mn content of 0.05%, we would have obtained much too
high a value, namely 0.074%, if we had extended the old substi-
tute calibration line downward.

VI. When Is the Background'Corr6ctiOn'Necessary?

It would be very bothersome if we had to calculate through
all the Tormulas every time in order to decide whether the
influence of the background is so strong that 1t must be taken
into account, or whether we can use a substitute calibration line
for the analysis. We need a simple criterion.

Obviously, the smaller a concentration range, the better a
substitute calibraticon line drawn for it will be. If we wish to
answer the gquestion, we must therefore prescribe the extent of
the concentration range. Another relevant factor is the intensity
of the analysis line in comparison with the background. This
factor can be gauged by means of the guantity =~

L ¥gy— Yo = AV = loga.

The ahalysis line is relétively faintest in the spectrum of
a speclimen whose content lles at the lower end of the prescribed
range. Thus Wwe are interested in the smallest value of AY&, the
value at thellower end of the range. This we will designate
with the symbol AU;

AU = AYY = X

{14y = Yy at the lower limit of the concen-

tration range of a calibration.

From the formulas in this paper, we can now calculate the
maximum error which can occur within a given concentration range
when AU has a specific value. The maximum error in aKgivén
concentratilon range occurs at the concentration corresponding to

20

/311



X,. If we first substitute x_ in (10) and then in (7), we find:

1 L - a

v Z2hi(w,) = ylog ﬂ’." _1 + 7'logx; — 5’ log o, ' (13)

i JPu—

In order to calculate this quantity as a function of the con-
centration range kz/kl and of AU, we proceed as follows: we take
a normal value for n, and set n = 1. Then,!because of (4},

| log (yfky) = log (2, — 1) - log (z, — 1). \

From this we obtain:
N 3:2--1‘1"1‘;{-1?1“*]). \ - (1)
The given value of AU is Log xq; thus we also have log(xl - 1).

Thus we have all the quantities we need to calculate the maximum /312
error from (13) via (9), (12) and (10). .

This is done in Fig. 4. On the left side is given the error
in the logarithm of the concentration, and on the right the cor-
responding error as a percentage of the concentratlion. There are
curves for concentration ranges of variocus widths, from 1:2 to 1:1000.

An example will illustrate the uée of Fig. U:

We stipulate that the systematic error in analysis should be
less than 2%. The calibration covers a concentration range of 1:10,
e.g. the range from 0.04% to 0.40% or from 1.2% to 12%. In that
case, according to Fig. 4, the crucial value of AU must be larger
than 0.8 1f the background correction is to be eliminated. 1In
order to clarify the meaning of this condition, recall that in the
middle UV, the glope of the density curves 1s roughly 1, so that
AY ¥ AS for densities in‘theruppér straight portion of the density
curve (Sigreater‘than about 0.5). The condition AU > 0.8 would
then mean that the‘density.differénce betWéén‘line'+ background
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Fig. 4. Maximum systematic error in neglecting background.
(Slope of calibration curve n = 1l; AU = logx, =Y - Y

1 L+U U
for lower end of range).

Key: a. Concentration range
b. Error

and the background by itself at the lowest concentration in the
calibrating range must be at least 0.8. The condition is there-

fore relatively strict.

The curves in Fig. 4 hold for n = 1. However, they can be /313
used for any other values of n by multiplyling the numbers on the
error scale by n. According to (9), n‘%d n, therefore according
to (10), v ~ n as well, and thus by (12) and (7), h(xa) v o too.

Figure 4 is a kind of alert table for work in a spectrochemical
laboratory; it gives a complete answer to the first, important
question of the introduction.

In Fig. 4, 1t is striking that the curves for AU + 0 tend

toward finite limits. In obher words, neglecting the background
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does not produce arbitrarily large errors, even when the line is
barely visible against the background. Z. Bochnicek has derived
the following formula for these limits:

P

Jc_f_l 1Ug—l.-—:—' lnge ' (15)
e 4 log 2B -

2 e | G

ky &y

2h(2,)50 - 0 = log
:  log

This formula is obtained by expanding aU = log x; for small
values, logxq n (*lw-Ll)-logeg and then running through Egs.
(9), (12), and (13).

I am indebted to Z. Bochiilicek, who calculated the numerical
Values for the curves in Fig. 4, and to A. Richter for her care-
ful preparation of the spectra and analyses for the numerical
example 1in V.

Appendix. Background Correction with Incorrect Filter Value

In the work on systematic errors in analysis [5], the follow-
ing question was left open: what 1s the effect on the background
correction 1f all the intensity ratios have been calculated with
an incorrect filter value Ame We now have the meansuto answer
this question.

As in [5], we again designate the true values with small
letters, and those calculated with the lncorrect filter value
with capital letters. The error factor of the filter value is
£ = 4Y, /Ay, . All calculated AY' are incorrect by this factor;

; A Y.‘ = fady'. \ (16)

The correction facteor D is tabulated in {2] as a functicn of

AVy =Yy v— Yy
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flor clarity, we writé'DCAY%Q;. The background correctlon supplies /314

the Intensity ratioc &f the line by 1tself to the background;
Ay&?=dy&—-IN4ybL ' \ (17)

The physical relationship between-the concentration and the

intensity ratio is given by the equaticn of the true calibration
line (4), which we must now write with lower-case letters:

P

logk = 5 dyy, + loghy. / (Ha)

Substituting (17) into (4a), we obtain the physical relation-
ship between the concentration and the uncorrected ilntensity ratilo
AYL, 1.e. the equation of the true calibration curve:

logk = 5dys— 4 D(dyi ) - loghu. l | (18)
Then we substitufte (16) and find:

. lbgk . -?—AY{, - ,;D(f’i:"i’) + log ky. / (193

This is the equation of Che calibration Cﬁrve actually found
ag a result of calibration spectra; this 1s because we are only
able to calculate the values of AYé. If we are working in a con-
centration range in which this curve has a pronounced curvature,
we will make a background correction In order to straighten it out.
Since we are not aware of the incorrect filter value, we do this
with the systematically incorrect values AYﬁ and calculate:

LAYy = AV DAY \ (20).

The calculated values AYU and the true values AyU are there-
fore not related:by (16). This 1s the crucial feature.
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We substitute (20Y in (19) and obtain the equation of the
caleulated corrected calibration curve.:

3 1ogk-_~=%_4yu+10gz-v+9}%_D(Jrar)—ﬁ("?"}]. - (21)

Were £ = 1, i.e. 1f the fllter value were borrect, then the
expression in brackets would vanish; and we would have the Equation
(42) of the true calibration line. If f # 1, the value of the
expression in brackets is a function of AYﬁ; the cbrrected
calibration curve is also curved, and the background correction
does not bring about the desired complete straightening of the
calibration curve, as long as an incorrect filter value is
employed in the calculation.

To see what has been achieved anyway, we wish to examine more /315
closely the form of the corrected curve (21). For large values of
AY&, il.e. at relatively“high concentrations, both terms d&n the
brackets are small., At its upper end, the curve approaches the
straight line e e
i . log & =_-;?— d¥ g 4 logky, \

The straight line passes through the flxed point of the true
callbration 1line, but has a different slope. In our analysis
with the incorrect fiiter value, we would find this line as the
callbration 1line, il it were possible to measure directly the
intensity of the line by itself, without the underlying background.
However, we do not find it, because we are always compelled to go
by way of the background correction.

For small values of aYﬁ, l.e. for relatively low concentra-~
tions, we take the common approximation formula

E AY' = loga A= 0.424 (w — 1),

I
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This implies 4Y & log AY® + 0.362, and by (17),

DAY ) e AT — log d T - 0.362.

(22)

Correcting terms in the brackets in (21), and using the
appreximation for aAY in the reverse directlon, we finally obtain
as an approximation formula for (21) in the region of low con-
centrations:

1 logh sy A¥; + IOQ‘I\‘U — ;}]ng‘ ' (23)

This is a calibration line with the same slope as the trnue calibra-
tion line, but with a fixed point shifted by -~nlog ..

At both ends, the calculated calibration curve is therefore a
straight 1line, but with the slope n/f at the upper end, and the
slope n at the lower end; in between, there is a transition with
continuous curvature. The calibration curve (19) for AYS, on
the other hand, has the slope n/f at the upper end, but += at
fhe lower end; i1ts curvature in the transition region is therefore
much greater. In any case therefore, the background correction
provides a partial straightening of the calibration curve; it
may be enough 80 that a straight-line calibration curve can be
drawn in limited concentration ranges. Caution will be necessary,
however, i1f extrapolations over larger ranges are required, as
in calculating spectrochemical detection limits (See [U7).

So far we have only talked about calibration curves expressed

in terms of a background. What hﬁppens wilth calibration curves
expressed in terms of a line of the base element?

For the fixed point of the true calibration line, (3) implies

?' ‘logko:?]ngﬁ'+;ﬂ(y6‘“ﬂUzL

In the equations of the calibration curves, which were cal-
culated with the incorrect Tilter value, we must set
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AV = AT 1 (T Tay) = AT6 + [He= V7). |

The equation for the ﬁppér asymptote of (21) then becomes

logk = %—A.YG + logky -+ 4 (ya— youz)- \ (24)

Hence, this line has the same fixed point ko as the true callbra-
tion line.

For the other asymptote (23), we find

U Togk = qdYe 4+ nf (o — yu,) -+ logky — nlogf. 3 ‘

From it, we subtract the equatlion of the true calibrétion line
expressed in terms of the base line, s0 that we are left With;

i — . - -

| AT dye = —( — DTS 0, + log. (25)

This means that the lower asymptote 1s shifted along the horizontal
axis, relative to the true calibration line, by the amount on the
right side of (25).

The easy way to remember this situation is: the upper asymptote
passes through the same flilxed point, and the lower one has the same

slope as the true calibration line.

Figure 5 presents an example for calibration curves calculated
with an incorrect filter value, compared with the correct curves.
In this case, the error factor f is 1.5, ile. very high, in order
to make the differences stand out. This would mean, for instance,
that the transmittance of a filter was taken to be 35% when it was
really 50%. The slope of the true calibration line is 1.0;

g - y‘U'i'l' _=_-‘_7—.1.-'3_0‘Q:_.‘_3 - With-these figures, the shift of the lower

%mis value (yg =~ ¥yrle= -1.3 1s chosen so that the different curves

in the diagram will “be well separated. This value would mean that the
background behind the adlloying-element line was 20 times as strong as
the line of the base element. This could hardly occur. At any rate,
such an assumption can be given an illustrative meaning: if the spec-
trum were taken with a step filter, and the base line in the attenuated
stage compared with the alloying-element line in the unattenuated one
such & ratio would be conceivable. 2 ’
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asymptote relative to the true calibration line will be 0.826,

by (25). This crude example shows that it 1s generally permissible
to round off the filter value AYm a bit, to make the calculations
more convenient. Over reasonably small concentration ranges, the
corrected calibration curves will still be sufficiently straight,
and the systematic errors due to the changed slope and the lateral
displacement can be compensated for in the calibration.

For the idea of the
investigation déscribed in
o this Appendix, Iidm indebted
S U (ya R to my coworker K. Polack,

- A | ana 1 would like to express
my gratitude to him.
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Fig. 5. The true calibration
curves (Ayg and Ayé) and the
calibration curves found when an
incorrect filter value 1s used
(AYy and AY4). (Slope of th
true calibration line n = 1;
epror factor of the filter wvalue
f =1.5; yg - yyg = -1.300.)

Key: a. Fixed point
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